
An “Expert” Expert
by Paul Warren

Ask any Delphi programmer
what makes Delphi special and

you’ll hear about the visual devel-
opment tools, the components, the
database connectivity and the su-
perb compiler. You may also hear
about the open tools API. But what
is the open tools API? Is it just a
fancy way of integrating third party
tools or is it more?

The Project and Form templates
are useful for quickly creating
frameworks, but they are fairly sim-
ple and not as flexible as I would
like. Experts, on the other hand, are
extremely flexible, somewhat un-
documented and even a little mys-
terious. This is the perfect
combination to catch my interest.

Armed with my back issues of
(you guessed it) The Delphi
Magazine I set out to explore
experts. The first Expert I ever
installed was Bob Swart’s
DLLSkeleton Expert. As you recall,
Dr.Bob explained how he created
this in Issue 3. I used it to create the
framework for my password pro-
tection system (included on a re-
cent free disk). The DLLSkeleton
Expert was so useful I started think-
ing about creating my own experts.

One bad habit I have (and it’s not
the only one) is forgetting to add
my copyright panel and a descrip-
tion to my source files before
releasing them. I had often wished
the Delphi component expert
would do this for me. I seriously
thought about creating a compo-
nent expert but if experts were as
useful as I thought they’d be I
would be writing more of them,
maybe many more. Then I won-
dered whether I could write an
expert to create experts. Well, let’s
see, I’ll start by calling it an
“Expert” expert...

The Expert Form
Creating an expert is quite straight
forward (at least it is after reading
the various articles that have
appeared in these pages). My
intention with this article is to
briefly cover the creation of my
“Expert” expert and concentrate
on some tips that I found useful.

The first step is to design the
interface form. There are three
types of expert: Project, Form and
Standard (four in Delphi 2.0). I
wanted to offer users the option to
create any of these. An expert also

needs a name and may or may not
need a form. I also decided to add
memo fields for a description and
for copyright information. Figure 1
shows the form for my “Expert”
expert.

Every expert has to have a
unique ID string, the comments in
the ExpIntf unit say that the format
of the ID string is, by convention,
CompanyName.ExpertFunction, hence
the company name edit.

The Expert
After I had my form designed I
added the expert’s type declara-
tion. All experts derive from the
TIExpert abstract base class and
they must declare and override
at least some of the TIExpert
methods.

Next, I added the override
methods. I had already decided
that my “Expert” expert should be
a standard expert. It really made no
sense for it to be a form or project
expert. GetStyle therefore returns
esStandard. The rest of the code is
shown in Listing 1.

The Execute method is the heart
of a standard expert. It creates the
form and launches the expert. The

➤ Left: Listing 1, Below: Figure 1function ThgExpertExpert.GetStyle: TExpertStyle;
begin
 Result := esStandard;
end;
function ThgExpertExpert.GetIDString: String;
begin
 Result := ’hgsoft.ExpertExpert’;
end;
function ThgExpertExpert.GetComment: String;
begin
 Result := ’’; { not needed for esStandard }
end;
function ThgExpertExpert.GetGlyph: HBITMAP;
begin
 Result := 0; { not needed for esStandard }
end;
function ThgExpertExpert.GetName: String;
begin
 Result := ’Expert Generator’;
end;
function ThgExpertExpert.GetState: TExpertState;
begin
 Result := [esEnabled];
end;
function ThgExpertExpert.GetMenuText: String;
begin
 Result := ’Home&Grown’’s Expert Expert...’;
end;
procedure ThgExpertExpert.Execute;
begin
 if not Assigned(hgExpExpert) then
 hgExpExpert := ThgExpExpert.Create(Application);
 hgExpExpert.ShowModal;
end;

September 1996 The Delphi Magazine 37

form can be modal or modeless as
desired. For my “Expert” expert I
chose a modal dialog style.

Believe it or not this is already an
expert. It can be compiled into
COMPLIB.DCL and the form will
appear when you select the corre-
sponding menu item. Unfortu-
nately, if you want an expert that
actually does anything you have to
do a little more work.

Making It Work
Since the are several options avail-
able to the user I had to have some
flags to hold the choices. I chose a
set type called TExpAttrs for the
four choices. The StyleClick
method sets or clears the set
elements.

For the copyright information I
decided to load a text file from disk
using the Memo2.LoadFromFile
method. This way any user can
include copyright information by
simply putting a file in their
\WINDOWS directory called
CPYRIGHT.TXT.

The rest of the work is done in
the BitBtn1Click event (the OK but-
ton). First we have to include the
ToolIntf unit in the uses clause.
Then check if ToolServices is not
nil. This guarantees the IDE is run-
ning. Next we ask ToolServices for
a new module name. The com-
ments in ToolIntf explain that
GetNewModuleName automatically
generates a valid file name and unit
identifier. With valid unit and file
names we can generate the expert.

Generating the expert involves
creating a form (if requested),
creating synchronous source
code, writing the form to disk and
passing the source to the editor.
There is more than one way to do
this. Marco Cantu and Bob Swart
wrote their Database Expert form
and source to disk and then copied
the source to a virtual stream via a
file stream.

If you look at the source in the
\DELPHI\DEMOS\EXPERT direc-
tory you will find the source of a
number of experts from
EXPDEMO.DLL. The file DLG.PAS
uses a different way to create an
expert: both form and source are
written directly to virtual streams.
The process is completed by

calling ToolServices.CreateModule,
passing the form and source
streams as parameters. This was
the approach I took.

The BitBtn1Click event code is
shown in Listing 2 along with the
CreateForm and DoFormCreation
methods. One interesting feature

of this code is the call to
Proxies.CreateSubClass method.
As far as I can tell the Proxies unit
is completely undocumented.
There is not even a PROXIES.INT
interface included with Delphi 1 or
2. Proxies.CreateSubClass obvi-
ously creates a form in memory

function ThgExpExpert.DoFormCreation(const FormIdent: string): TForm;
{ Create the dialog defined by the user }
begin
 Result := TForm.Create(nil);
 Proxies.CreateSubClass(Result, ’T’ + FormIdent, TForm);
 with Result do begin
 BorderStyle := bsSizeable;
 Width := 400;
 Height := 250;
 Position := poScreenCenter;
 Name := FormIdent;
 Caption := FormIdent;
 end;
end;

function ThgExpExpert.CreateForm(const FormIdent: string): TMemoryStream;
var NewForm: TForm;
begin
 Result := nil;
 NewForm := DoFormCreation(FormIdent);
 try
 Result := TMemoryStream.Create;
 Result.WriteComponentRes(FormIdent, NewForm);
 Result.Position := 0;
 finally
 NewForm.Free;
 end;
end;

procedure ThgExpExpert.BitBtn1Click(Sender: TObject);
var
 FileName: TFileName;
 ISourceStream, IFormStream: TIMemoryStream;
 UnitIdent, FormIdent: string;
begin
 { code for expert goes here }
 if ToolServices <> nil then begin
 { I’m an expert!! }
 if ToolServices.GetNewModuleName(UnitIdent, FileName) then
 try
 UnitIdent := LowerCase(UnitIdent);
 UnitIdent[1] := Upcase(UnitIdent[1]);
 FormIdent := ’Form’ + Copy(UnitIdent, 5, 255);
 if eaCreateForm in Definition then begin
 IFormStream := TIMemoryStream.Create(CreateForm(FormIdent));
 IFormStream.AddRef;
 ISourceStream :=
 TIMemoryStream.Create(CreateSource(UnitIdent, FormIdent));
 end else
 ISourceStream := TIMemoryStream.Create(CreateSource(UnitIdent, ’’));
 try
 ISourceStream.AddRef;
 if eaCreateForm in Definition then
 ToolServices.CreateModule(FileName, ISourceStream, IFormStream,
 [cmShowSource, cmShowForm, cmUnNamed, cmMarkModified])
 else
 ToolServices.CreateModule(FileName, ISourceStream, nil,
 [cmShowSource, cmUnNamed, cmMarkModified]);
 finally
 ISourceStream.OwnStream := True;
 ISourceStream.Free;
 end;
 Close;
 finally
 if eaCreateForm in Definition then begin
 IFormStream.OwnStream := True;
 IFormStream.Free;
 end;
 end;
 end;
end;

➤ Listing 2

38 The Delphi Magazine Issue 13

which does not get destroyed
when the expert form closes.

Creating the synchronous
source is straightforward but tedi-
ous and since the full source code
for the “Expert” expert is included
with this month’s free disk I will
leave it to you to explore how to
generate the source. All that
remains to be done is re-compile
the library and the “Expert” expert
is ready to use.

Using The “Expert” Expert
Let’s create a useful expert using
the “Expert” expert. While you can
find the units belonging to any pro-
ject directly from the IDE, only the
file names are available. I wanted a
listing with fully qualified paths. In
the ToolIntf unit there are meth-
ods to get the number of units in
the active project and the unit
name fully qualified. Why don’t we
create a UnitsInProject expert?

Run the “Expert” expert from the
Help menu. Set up the main form as
shown in Figure 2. When you click
the OK button a framework for the
UnitsInProject expert is created
and opened in the editor.

Add an OK button and a TListBox.
The only code you need to write is
in the Form1.OnShow event and the
OkButton1.OnClick event. Listing 3
shows the code. Save the file as
UNITSIN.PAS in a directory on your
library path and add it to
COMPLIB.DCL. That’s it: simple
isn’t it? Now you can create experts
at the drop of a hat.

What Are Experts
It’s all well and fine to create ex-
perts at will but if you’re anything
like me you want to know how they
work. ExpIntf and ToolIntf are
mysterious and marginally docu-
mented. How do these calls to the
library and editor work?

While I was creating my “Expert”
expert I tried poking around in the
COMPLIB.DCL using the venerable
Resource Workshop. On the
chance that COMPLIB.DCL was a
.RES file I renamed it COMPLIB.RES.
Some resources were visible, but
there was a lot of garbage too.
Obviously COMPLIB.DCL is not a
.RES file.

I tried renaming it COMPLIB.DLL
and this time Resource Workshop
opened and de-compiled it per-
fectly. Inside I found resources
corresponding to the component
palette, the various experts and
many other goodies like cursors
and bitmaps. What a treasure! This
is the heart of Delphi’s bag of
tricks. If you look at Figure 3 you’ll

see Dr.Bob’s DLLSkeleton Expert in
all its binary glory.

So COMPLIB.DCL is really a DLL.
Makes you wonder whether you
can insert your own resources di-
rectly into it with Workshop or if
you can access resources from
outside the IDE. Are you getting
any ideas?

Conclusion
Although I have been brief, we have
looked at all the steps needed to
create an expert. We have devel-
oped a useful tool and started put-
ting it through its paces by creating
the UnitsInProject expert. Perhaps
most importantly, though, we’ve
had a glimpse of the true elegance
of Delphi in the open tools API.

Paul Warren runs HomeGrown
Software Development in Lan-
gley, British Columbia, Canada
and can be reached by email at
hg_soft@uniserve.com or visit
http://haven.uniserve.com/~hg_soft

procedure TForm1.FormShow(Sender: TObject);
var i: integer;
begin
 ListBox1.Clear;
 if ToolServices <> nil then { I’m an expert!! }
 for i := 0 to ToolServices.GetUnitCount do
 ListBox1.Items.Add(ToolServices.GetUnitName(i));
end;

procedure TForm1.OkButton1Click(Sender: TObject);
begin
 Close;
end;

➤ Listing 3

➤ Left: Figure 2, Right: Figure 3

September 1996 The Delphi Magazine 39

	The Expert Form
	The Expert
	Making It Work
	Using The 'Expert' Expert
	What Are Experts
	Conclusion

